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Abstract—Detection of the start and the end time of words in a
continuous speech plays a crucial role in enhancing the accuracy
of Automatic Speech Recognition (ASR). Hence, addressing the
problem of efficiently demarcating word boundaries is of prime
importance. In this paper, we introduce two new acoustic features
based on higher order statistics called Density of Voicing (DoV)
and Variability of Voicing (VoV) obtained from the bispectral
distribution, which when used along with the popular prosodic
cues helps in drastically reducing the recognition error rate in-
volved. An ensemble of three different models has been designed
to minimize the false alarms, during word boundary detection, by
maximizing the uncorrelatedness in prediction from each model.
Finally, the majority-voting rule was used to decide if the given
frame encompasses a word boundary. The contribution of the
work lies in: (i) Converting word boundary detection into a
supervised learning problem (ii) Introduction of two new higher
order statistical features (iii) Using ensemble methods to find
the best model for prediction. Experimental results for NTIMIT
Database shows the efficacy of the proposed method and its
robustness to noise added during telephonic transmission.

I. INTRODUCTION

Determination of the word boundaries for continuous speech
is a challenging task and finds immense significance in the
field of Automatic Speech Recognition (ASR) as it helps to
reduce the ASR problem into a more simpler single word
transcription problem. Word boundary detection can be utilised
to extract the Out of Vocabulary (OoV) words such as proper
nouns [1] as well as for the rich transcription of speech.

Prosodic features have proven to be superior to word-level
information as the speakers use prosody to impose structure on
both spontaneous and read speech. Extensive work has been
done for German and Indian Language using the prosodic cues
[2]. Studies were conducted for observing the behaviour of
the pitch pattern across the speech utterances. It was observed
that the pitch frequency F0 fell gradually from the beginning
to the end of the utterance. The fact that F0 rose from the
first syllable to the last syllable in a word and fell to the first
syllable in the next word was utilized. Log of the average
energy [3] is another feature which has been used along with
short-term energy [4] to localize the word boundary.

However, these popular acoustic cues often fail to give clues
about the word boundaries, particularly when the beginning
of a word gets co-articulated with the end of the previous
word. The problem becomes further challenging when noise
is introduced in the audio files. Basic features become less
reliable in the presence of different kinds of sound artifacts
and noise, especially when it is non-stationary. In this paper,

we propose the usage of the rudimentary acoustic features and
higher-order statistical (HOS) features like kurtosis, skewness
combined with two new simple yet powerful features, derived
from HOS, to improve the robustness of the system. Majority-
voting method was used to decide the outcome of each
frame from the ensemble of three models namely, Support
Vector Machines (SVM), Artificial Neural Network (ANN)
and Random Forest Classifier (RFC).

The paper has been organized in the following manner, Sec-
tion II and III, briefly discusses the features that were explored
in the past ( [1], [5], [6] ) and the additional features that has
been proposed in this work. In Section IV, experimental setup
is explained with the information about the corpus, classifier
setup, evaluation and the implementation of the algorithm. The
results are presented in section V. Section VI concludes the
work with brief description on future possibilities.

II. RUDIMENTARY ACOUSTIC FEATURES

The following are the basic acoustic cues extracted from the
prosodic information and used in word boundary detection:

A. Short-time pitch frequency [4]

Pitch can be defined only for the voiced portion of the
speech. It takes on very low values, close to zero, at segments
or frames corresponding to the unvoiced region or to those that
contain only noise. In general, the frame with word boundary
is surrounded by the unvoiced frames and hence, it is in the
region where pitch defined is zero.

B. Zero Line Crossing [4]

Zero Line Crossing gives the number of times the the
signal crosses the zero mark within the particular frame. This
quantity is comparatively lower for frames in and around
the voiced portion of speech and has higher values for the
segments which correspond to the word to word transition.

C. Log Energy

It has been observed that majority of the frames belonging
to the transition between words have lower energy. This could
be used as a cue to decide whether the frame is within the
a word or closer to a word transition. It is derived from the
root-mean squared energy of each frame.
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BISPECTRUM OF UNVOICED SEGMENT OF SPEECH
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Fig. 1. Bispectrum: Left Coloumn: (a) Noisy (c) Unvoiced (e) Voiced
Spectrum, Normalized Cumalative Sum: Right Coloumn: (b) Noisy (d)
Unvoiced (f) Voiced Cumulated Sum

D. Probability of Voicing

It gives the probability of the given frame belonging to the
voiced part of the speech, instead of having a hard bound to
decide the same. It is computed using Bayesian Rules on the
observation metric having two components namely, maximum
unnormalized template-frame correlation and minimum of the
crossframe correlation.

III. PROPOSED HIGHER-ORDER STATISTICAL FEATURES

Higher-order statistics (HOS) refers to functions which
consider the behaviour of third or higher order power of the
given data like kurtosis, skewness,etc as opposed to more
conventional techniques of lower-order statistical features like
mean and variance. The general motivation behind using this
higher order spectra is to derive the much needed information
with regard to the deviation from Gaussianness (normality).

A. Skewness [7]

It can be used to quantify the symmetry in the signal.
Skewness is calculated as follows:

skew(Xf ) = E

([
Xf − µf
σf

]3)
(1)

where E(.) is the expectation operator, Xf is the time series
speech signal, µf and σf are the mean and variance of the
given speech frame, f. The effectiveness of skewness in voiced
segment detection [6] and noise classification motivates its
usage in the given problem.

B. Kurtosis

Kurtosis [8] measures both the ”peakedness” of the distri-
bution and the heaviness of its tail and is defined as :

Kurt(X) =
E[(Xf − µf )4]
E[(Xf − µf )2]2

(2)

Kurtosis quantifies whether the shape of the data distribution
matches the Gaussian distribution.

C. Bispectral Features

These features are obtained by taking the 2-dimensional (2-
D) fourier transform of third order cumulant. Cumulant of a
random variable (here, the time series speech signal, Xf ) is
defined as Kf and is the natural logarithm of the moment-
generating function:

Kf (t) = logE[exp(tXf )] (3)

The bispectral spectrum can be given as :

Bf (ω1, ω2) =

∞∑
τ=−∞

Kf (τ1, τ2)e
−jω1τ1e−jω2τ2 (4)

where Kf (τ1, τ2) can more intuitively be seen as:

Kf (τ1, τ2) = E(x(τ1)x(τ2))− E(g(τ1)g(τ2)) (5)

In Fig.1, the bispectral distribution for noisy, voiced and
unvoiced frames, obtained by averaging over multiple frames
from different traning examples, has been shown. By taking
sum along each of the columns of the bispectrum, which is
hermitian symmetric in 2-D, for normalized frequency range
of [0,1]. It can be observed that the resulting distribution is
symmetric about the center (0.5) and hence, only one portion
has been considered for further analysis. This distribution
derived for each frame, Xf is referred to as Bf in the rest
of the paper.

On comparing the distributions and its statistical metrics for
noisy, voiced and unvoiced segments. The observation made
were as follows:
• Voiced Region: Have very few peaks in its cumalative

distribution. Further, most of them are concentrated about
the center of the spectrum. It can be concluded that the
voiced segment has its peaks close to the origin and are
relatively few in number.

• Unvoiced Region: Have lesser number of peaks when
compared to voiced segment, and are located very close to
the center with a well distinguished peak which is clearly
dominant over the other ones. On proper thresholding one
can conclude that unvoiced segment have distinguished
peak(s) close to the point of symmetricity.



• Noisy Spectrum: Follows a random ”noisy” distribution
have many peak(s) with no clear distinguished peak. The
peaks are also in close proximity to one-another.

Further, to capitalize on the characteristic behaviours men-
tioned above, two new features were extracted from the bispec-
tral spectrum called Density of Voicing (DoV) and Variability
of Voicing (VoV). The idea behind using both the features is to
differentiate a noise-like or silent region (most likely to have
word boundary) from unvoiced parts of speech (usually results
as false alarms). The process of extraction of the features and
their significance has been elaborated below:

1) Density of Voicing (DoV): Considering the idiosyncratic
behaviour of each segment, a feature has been derived which
takes into account the relative distances between the peaks in
the cumulative plot. The feature was computed after excerpting
one of the symmetric segment Bf . Mean substraction was
performed to remove any dc offset and thresholding to remove
any noise-like structures and prevent occurence of false peaks.
Following which the feature was computed by averaging
the relative distances between the consecutive peaks. DoV
essentially gives density of the peaks that is how closely they
are placed with respect to one another. It can be given by,

DoV (X) =
1

Np

∑
i∈Np

(Pf (i)−Pf (i−1)),∀ i = 1, 2, ..Np (6)

where Np is the total number of peaks in Yf which is
the distribution (shown in Fig. 1), of one segment obtained
from the bispectrum, for frame f after subjecting it to mean-
subtraction and thresholding (ε) i.e Yf = (Bf − µx) > ε and
Pf (i) gives peak distance at i given by:

Pf (i) = loc(Y indf == 1) (7)

where loc(.) is a operator designed to give the location of
non-zero instances and

Y indf =

{
1, if Yf > 0

0, otherwise

2) Variability of Voicing (VoV): The number of peaks
present in cumulative distribution is fundamentally different
for each of the voiced, unvoiced and silence or noisy segment
of speech. It is relatively small for the unvoiced part in
comparison to noisy segment. By taking into account, the
variance of the distribution resulted in the desired feature
called Variability of Voicing (VoV). It can given by:

V oV (X) = Np ∗ V ar(Yf ) (8)

IV. EXPERIMENTAL SET-UP

A. About the corpus

TIMIT is a corpus of phonemically and lexically tran-
scribed speech of American English speakers of different
sexes and dialects. The NTIMIT (Network TIMIT) dataset has
been used for conducting experiments and comparing results.
NTIMIT [9] is a telephone bandwidth version of TIMIT. It
was collected by transmitting the TIMIT database over the

telephone network. The database consists of 630 speakers, 438
male and 138 female speakers. Speakers are categorized to
one of the eight dialect regions and approximately match to
the speech dialects in the American Language.

B. Feature Extraction

The features [10] were extracted from each audio file of the
NTMIT database after segmenting it into smaller segments of
320 samples each ( Which roughly corresponds to 20ms) with
an overlap stride of 160 samples (50%) overlap.

C. Classifier Setup

The central theme of the work is to convert the problem
of word boundary detection into a generalized supervised
learning problem. Considering dynamics of speech signals,
the word boundary predicted can be assumed to be correct
if the estimated location is within a few frames of the actual
boundary location. Thus, providing more landmarks to train
the classifiers. A total of K frames in the neighbourhood of the
annotated frame were chosen and labeled to the class indicative
of the word boundary, based on the hypothesis that behaviour
of features is similar or identical its neighbourhood. Here,
we have chosen that the estimated word boundary location
is considered to be correct if it is within 10 frames of the
actual boundary location. Hence, K ∈ [1, 5], where K= 5
indicates that 5 frames (or instances) before and after the word
boundary annotated window belong to class of word boundary.

To make this classification task robust, an ensemble method-
ology which builds a predicitve model by combining the
three different classifier systems namely, SVM, ANN and
Random Forests is proposed. Following which majority voting
is performed to decide if the frame encompasses a word
boundary or not.

D. Evaluation

The evaluation metric chosen to report the result is F-score
because the training data upon feature extraction is essentially
skewed (atleast with the ratio 1:3, when K=5). This imbalance
was rectified by fine tuning the hyper-parameters of the
training model such that each class is weighted proportionate
to ratio of the classes. Random undersampling [11] of minority
class to increase the sensitivity of the classifier to this class
was performed as a preprocessing step.

V. RESULTS

The parameter setting for each of the model were obtained
by performing Grid Search to find the best or optimal F-
measure. The resultant parameters are as follows:
• SVM: Kernal= Radial-basis function, C= 10, Gamma=

0.0001, Probability Measure Used= True.
• Random Forests: Number of Estimators= 10000, Boot-

strap= True, Minimum Sample Leafs= 9, Minimum Sam-
ples Split= 3, Criterion= Gain in Information (gini) and
Maximum Features= 1.

• ANN: Number of Hidden Layer= 1, Number of Hidden
Neurons= 100, Learning Rate= 0.005, Maximum Itera-
tions= 200, Activation Function= Rectified Linear Unit.
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Fig. 2. F-Measures vs Frame Width

The F-score obtained using each learning model listed above
in isolation fo the task of classification was 0.460, 0.462 and
0.457 respectively.

In order to further enhance the performance, the ensemble of
three models to extract the optimum F-measure was performed
such that errors in prediction from each model are uncorrelated
with respect to one another. A Majory Voting classifier [?]
was implemented in two ways i.e. with soft-thresholding and
hard-thresholding resulting in a F-score of 0.431 and 0.467
respectively.

The Table I shows the F-score of word boundary detection
for various prediction frame widths (K) and as expected it
was seen that F-score improves with increase in the frame-
width. In Fig. 2, curves for different models trained on acoustic
features and the prosposed features (DoV + VoV + Kurtosis
+ Skewness) has been shown. It can be observed that the
ensemble model performs consistently better in comparison
to the each model taken in isolation and also, that SVM fails
to find an effective hyper-plane for our task of classification.
Further, in Table II, a comparison of modified and regular
ensemble methodology’s performance has been shown. The
conclusion drawn is that the performance of modified/custom
ensemble methodology (predicts occurence of word boundary
if just one of the three model predict) is not comparable
with the traditional hard thresholded ensemble methodology
especially, for lower values of frame width K.

Following the determination of the best ensemble model,
the contribution of each features selected to the prediction was

TABLE I
F-SCORES FOR DIFFERENT PREDICTION FRAME WIDTHS (K) FOR

DIFFERENT SET OF FEATURES

Frame-Width F-Measure
K Acoustic only Acoustic+HOS+DoV+VoV
1 0.159 0.221
2 0.215 0.246
3 0.271 0.348
4 0.336 0.402
5 0.383 0.467

TABLE II
F-SCORES FOR DIFFERENT PREDICTION FRAME WIDTHS (K) FOR

DIFFERENT METHODOLOGIES

Frame-Width Ensemble Methodology
K Traditional Modified
1 0.221 0.211
2 0.246 0.239
3 0.348 0.334
4 0.402 0.400
5 0.467 0.466

computed using [12]. It was seen that the contribution of only
HOS features was 46.74 %.

VI. CONCLUSION

In conjunction with other works in speech recognition, ef-
ficient estimation of word boundaries is an essential precursor
for ASR, and will eventually lead to an overall powerful
speech recognition system. In this paper, two features called
DoV and VoV has been proposed which when coupled with
acoustic features and other higher order statistical features
improves the detection rate of word boundary. It has also been
shown that an ensemble based classifier performs better than
individual models in word boundary estimation.
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