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Problem Formulation 

NITK

● Binary Classification Problem 

● Not a trivial task 

             (a) Variations in poses.

             (b) Illumination, Proximity and Viewpoints. 

             (c) Background and People involved.

                          * Number of Selfies taken per 100,000 people.  

Source Data: http://time.com/selfies-cities-world-rankings/
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Motivation
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● Large scale image database segregation and retrieval [1].

● Sentiment Analysis [2] [3].

● Psychological studies [4] [5].

● Terminal Scene Understanding.

● Automatic Selfie-specific Image Processing.
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Example(s) - Human Perception
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How does the world perceive?
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Dataset Description
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● 70,000 images - roughly equal number of selfies and non-selfies.

● Majority of selfies obtained from selfeed.com [6] 

● Non-selfies  (a) ImageNet [7] - People and Objects Category

                               (b) INRIA persons dataset [8]

● Around 4k non-selfies were also manually collected.
                          

● Dataset kept as realistic as possible by not including images of 

landscapes, animals and vehicles.
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  Experimental Setup
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● Fine-tuning in caffe [20], initial learning rate was set to 
10e-06.

● Network was trained for 8000 iterations with Stochastic 
Gradient Descent with Batch Size of 16.

● The learning rate decreased by a factor of 0.5 for every 
2000 iterations.

● For SVM, linear kernel was used for classification with 
the regularization parameter C to be 1.
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● Accuracy less than 85% for both the architectures on a 
binary classification problem.

● How do the activations of the filters look like?

Architecture Accuracy(mAP)

AlexNet [9] 81.9

GoogleNet [10] 82.4

Performance of Popular CNN Architectures

         NITK
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CNN Visualizations



                             

18

   Can enforcing the network 
to learn head and shoulder 

orientation help?

         NITK

CNN Visualizations
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Handcraft feature extraction
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Two features were extracted as in [11] where 

(a) Hierarchical Histogram of gradients [12] - Head and 

shoulder alignment.

(b) Hierarchical Local Binary Descriptor [13] [17] - Face and 

head detection.
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Synergy Feature Generation
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● The synergy feature between head and shoulder orientation was learnt  

to find a single descriptor that represents both features.

● Canonical Correlation analysis [14] [15] a procedure that seeks 

maximal correlations between combinations of variables in both sets of 

data.

● As tool that finds the best projection of the feature matrices onto a 

common subspace such that correlation is maximized - 

                 Synergy feature S - Standardized Euclidean norm of the difference     

between U1 and V1. 
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  Performance of a shallow model
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Synergy feature alone is not 
discriminative enough !!!
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Architecture Accuracy(mAP)

AlexNet [9] 81.9%

GoogleNet [10] 82.4%

Synergy feature + 
SVM

52.4%



Idea
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● Handcraft feature generation for head orientation and 

shoulder orientation - Done

● Capturing the Synergy in the two orientations - Done

● Getting the final descriptor for classification ???
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Constrained CNN - A Feature Extractor
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● CNN architecture that learns the synergy in common subspace 

between feature.

● We employ alexnet [9] architecture and transfer learning by 

fine-tuning the model pretrained on the Imagenet dataset.

● Replacing the last fully connected layer by another of dimension 

same as S.

● The loss function is modeled as 

 

25



  Selfie Descriptor
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● The trained Convolutional layers are used as feature pools.

● Features are obtained at points which are view invariant.

● SIFT [16][19] keypoint locations are determined and the 
corresponding locations are tracked through the network using 
their stride value. 

● Activations in the four connected neighbourhood of these 
keypoints are obtained  based on a pooling operation.

● These pooled activations are aggregated over all the layers and 
concatenated to get the selfie descriptor [21].
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Model Accuracy(mAP)

Synergy Feature + SVM 52.4

Unconstrained AlexNet [9] 81.9

Unconstrained  GoogleNet [10] 82.4

Synergy Constrained AlexNet 
(Proposed)

86.3

28         NITK

  Experimental Results
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CNN Activations
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Occlusion Test [18]
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Method Accuracy 
(mAP)

Unconstrained 
AlexNet

77.1%

Unconstrained 
GoogleNet

75.3%

Synergy 
Constrained 
AlexNet 
(Proposed)

58.8%
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 Conclusion 

NITK
33

● This paper presents a synergy constraint based CNN training 
paradigm features discriminative for selfie detection. 

● The motivation was to mimic human perception by - 
            Capturing the synergy between head orientation and 

shoulder arm orientation.

● Relevant features were extracted and a synergy measure was 
obtained using CCA on the two sets of handcrafted 
features.

● The hypothesis was tested through ablative study
    (a) Visualization of Activations.
            (b) Occlusion Test.
            

● Experimental evaluation prove with mAP being better by 4%.
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 Future Work
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● Application in other subtle imaging analysis scenarios.
          Example: Scene understanding to separate foreground and 

background.

● Imposing Different Loss functions on different layer.

● Finding a method to capture synergy between more than 
two  features.

● Making use of Tractability in medical imaging 
            Example: Tumour detection 
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